Rayon: “Fashion’s Favorite” 1940 E.I. DuPont de Nemours & Co. Inc.

Support this channel: https://paypal.me/jeffquitney OR https://www.patreon.com/jeffquitney more at http://quickfound.net/ ‘Tracks the manufacturing of rayon from raw material to finished product.’ Originally a public domain film from the Library of Congress Prelinger Archives, slightly cropped to remove uneven edges, with the…

Rayon: "Fashion's Favorite" 1940 E.I. DuPont de Nemours & Co. Inc.

Source

0
(0)

Support this channel: https://paypal.me/jeffquitney OR https://www.patreon.com/jeffquitney

more at http://quickfound.net/

‘Tracks the manufacturing of rayon from raw material to finished product.’

Originally a public domain film from the Library of Congress Prelinger Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

https://en.wikipedia.org/wiki/Rayon
Wikipedia license: http://creativecommons.org/licenses/by-sa/3.0/

Rayon is a manufactured fiber made from regenerated cellulose fiber. The many types and grades of rayon can imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk.

Since rayon is manufactured from naturally occurring polymers, it is not considered to be synthetic. Technically, the term synthetic fiber is reserved for fully synthetic fibers. In manufacturing terms, rayon is classified as “a fiber formed by regenerating natural materials into a usable form”. Specific types of rayon include viscose, modal and lyocell, each of which differs in manufacturing process and properties of the finished product.

Rayon is made from purified cellulose, harvested primarily from wood pulp, which is chemically converted into a soluble compound. It is then dissolved and forced through a spinneret to produce filaments which are chemically solidified, resulting in fibers of nearly pure cellulose. Unless the chemicals are handled carefully, workers can be seriously harmed by the carbon disulfide used to manufacture most rayon…

Nitrocellulose

Nitrocellulose, a chemical derivative of cellulose produced with nitric acid, was first discovered in 1832 by Henri Braconnot but was unstably explosive until the 1846 process of Christian Schönbein, The degree of nitrification determined its explosiveness, solubility in organic solvents such as ether and acetone, and mechanical properties when dry. Its solubility was the basis for the first “artificial silk” by Georges Audemars in 1855, which he called “Rayon”.

However, Hilaire de Chardonnet was the first to patent a nitrocellulose fiber marketed as “artificial silk” at the Paris Exhibition of 1889. Commercial production started in 1891, but the result was flammable…

Acetate

In 1865, Paul Schützenberger discovered that cellulose reacts with acetic anhydride to form cellulose acetate. The German chemists Arthur Eichengrün and Theodore Becker invented the first soluble forms of cellulose acetate in 1903.

By 1910, Camille Dreyfus and his brother Henri were producing acetate film for the motion picture industry. In 1913, after some twenty thousand separate experiments, they produced excellent laboratory samples of continuous filament yarn, something that had eluded others in the cellulose acetate industry…

Today, acetate is blended with silk, cotton, wool, nylon, etc. to give fabrics excellent wrinkle recovery, good heft, handle, draping quality, quick drying, proper dimensional stability, cross-dye pattern potential, at a very competitive price.

Acetate shares many similarities with viscose rayon, and was formerly considered as the same textile. However, rayon resists heat while acetate is prone to melting…

…because viscose rayon is a stronger and more robust fiber than the otherwise similar acetate, it has come to dominate the market…

Cuprammonium method

Swiss chemist Matthias Eduard Schweizer (1818–1860) discovered that cellulose dissolves in tetraaminecopper dihydroxide. Max Fremery and Johann Urban developed a method to produce carbon fibers for use in light bulbs in 1897. Production of cuprammonium rayon for textiles started in 1899 in the Vereinigte Glanzstoff Fabriken AG in Oberbruch near Aachen. Improvement by J. P. Bemberg AG in 1904 made the artificial silk a product comparable to real silk.

Viscose method

English chemist Charles Frederick Cross and his collaborators, Edward John Bevan and Clayton Beadle, patented their artificial silk in 1894. They named their material “viscose” because its production involved the intermediacy of a highly viscous solution. The process built on the reaction of cellulose with a strong base, followed by treatment of that solution with carbon disulfide to give a xanthate derivative. The xanthate is then converted back to a cellulose fiber in a subsequent step. The first commercial viscose rayon was produced by the UK company Courtaulds Fibres in 1905…

0 / 5. 0

Leave a Reply

Your email address will not be published. Required fields are marked *